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Introduction

Molecular dynamics simulations were first proposed in the 1950-60s as a method to 

study the motions of atoms at the molecular level. Today, the most prominent use of molecular 

dynamics is the study of biological molecules and materials science. Molecular dynamics is the 

study of the motions of atoms and molecules by numerically simulating Newtonian dynamics. 

Since computers are discrete, they must simulate the continuous motions of atoms by dividing 

the trajectory into states where the velocities and positions of each atom are recorded. Forces 

and displacements are calculated for each time step, and the new state of the atoms computed, 

a process that continually repeats to simulate continuous motion. To guarantee that the discrete 

approximation does not deviate far from reality, the time step must be very small, making 

simulations very computationally complex. 

The ability to study molecules in atomistic detail provides a number of advantages over 

experimental techniques. Modern day imaging techniques can only examine atoms with 

extreme difficulty, and even this has been a breakthrough of the last few years. The next 

difficulty is in studies of picosecond scale dynamics, which also became possible recently 

through ultrafast lasers such as 2D IR vibrational echo spectroscopy.12 Despite not being able 

to account for excited electronic states, quantum effects, or the formation and breaking of 

chemical bonds, molecular dynamics can grant critical insight into many problems of biological 

interest, including protein-ligand binding, protein folding, RNA folding, and much more.17

Since molecular dynamics is a computationally difficult problem, simulations in the past 

were very short and were of limited size - less than 10 ps in total length and fewer than 1000 

atoms. Today, it is possible to simulate systems of up to 10,000-100,000 atoms for time periods 

of up to 1 ms. This system size is enough to accommodate single proteins interacting with an 

environment of explicit waters or other ligands, and the time period is finally reaching the 

lengths necessary to exhibit protein folding/unfolding cycles or unguided ligand binding. 

From a practical perspective, there are also now a number of highly optimized open 

source programs for MD with parallelizable code and/or GPU acceleration, including AMBER, 

GROMACS, CHARMM, Desmond, and NAMD, among many other packages. Although there 

are large scale projects either harnessing massive numbers of computers like Folding@Home, 

or utilizing extremely specialized hardware such as Anton, MD is also becoming a useful tool 
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accessible to everyday chemists and biologists to guide their research. As these programs 

grow in features, they also grow in complexity, with numerous tweakable parameters for setting 

up simulations. Improper setup of a simulation may turn even the best programs into random 

number generators creating trajectories that have no basis in reality. Therefore, this review will 

cover some considerations in running molecular dynamics simulations, and provide a recent 

application that shows future promise.

 

Force Field

The force field is perhaps the most important component of a molecular dynamics 

program. In general terms, the force field computes the energy of system based on its 

conformation. A number of force fields are commonly used for biomolecular simulations, 

including AMBER,2,5 OPLS,11,20 and CHARMM.7 

All of these force fields are considered additive all-atom force fields. Additive meaning 

that they can be separated into additive terms for bonded and nonbonded energies, and all-

atom meaning that all atoms are modeled in the force field. Historically most of these force fields 

were united-atom, which meant that effects of hydrogen atoms were folded with the atoms they 

were bonded to. Nowadays these methods are dropped in favor of the more realistic all-atom 

approaches due to advances in computing power.10 These “classical” force fields generally 

divide the total energy into four terms. The first is bond lengths, found via the sum of individual 

bonds treated as a harmonic potential. The second is bond angles, again found via a harmonic 

potential. These two terms are very strong, and are often constrained to save running time. The 

third term is torsions, found via a Fourier series for all unique sets of dihedral atoms. The last 

term is for pairwise non-bonded interactions, which is divided into a 6-12 Lennard Jones (LJ) 

potential and the Coulombic potential. The LJ potential represents dipole-dipole interactions and 

dispersion forces. 
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Each of these terms are parametrized based on a mixture of empirical data and 

quantum-level calculations. Bond and angle harmonic potentials are usually fitted to 

experimental vibrational data. Partial charges on atoms are derived from quantum calculations 

at the 6-31G* level of theory and restrained electrostatic potential (RESP) fitting. LJ parameters 

are derived somewhat differently between various force fields. OPLS is designed and fitted 

against condensed phase properties of organic liquids. In OPLS, these parameters are derived 

from Monte Carlo simulations of a large number of organic liquids to reproduce thermodynamic 

and bulk properties. AMBER similarly fits against various experimental parameters but is also 

based on some arbitrary determinations by the authors. There is also disagreement about how 

to scale down the LJ terms relative to Coulombic terms and differing atom types. Although 

the methods to derive LJ terms are not necessarily well-defined, they do match fairly well with 

experimental values. With all the other parameters fixed, torsional parameters can be fitted to 

quantum calculations at the RHF/6-31G* level for a variety of molecules and ions by comparing 

against MD simulations without torsional terms.

These force fields are similar on theoretical grounding but are fitted to very different 

sets of experimental values. When used to study model systems, such as short polypeptides, 

each force field occupies widely varying areas of the Ramachandran plot of backbone 

angles.13,14,27 Therefore, each force field has undergone evolution as different research groups 

try to improve older parametrizations due to the increase in available experimental data and 

faster computers.8 In recent years, AMBER and CHARMM have had reparametrizations 

improving dihedral potentials, resulting in improved force fields such as AMBER99SB-ILDN and 

CHARMM27/CMAP.15 Regardless, force field performance is still system-dependent, so many 

variants are used in simulations today.

Future development in force fields will involve improving classical force fields, as well 

as developing new approaches such as polarizable and QM/MM approaches. Polarizable force 

fields allow atoms to hold polarizable charges instead of the static fixed charges of classical 
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dynamics, and QM/MM hybrid approaches incorporate some quantum level calculations to parts 

of the system. These approaches have better accuracy, but at the expense of a much greater 

computational cost.

Bond Constraints

Bond constraints fix the bonds lengths and angles in the system, effectively removing 

rapid harmonic vibrations. The flip side is the ability to select a much larger time step for 

simulation. Typically without any bond constraints, simulations will be run around 1 fs per time 

step, but with bond constraints applied to all bonds, this can increase to 2-2.5 fs. Applying 

constraints to a limited subset such as hydrogen bonds will lead to an intermediate compromise. 

A number of constraint algorithms have been developed over time, SHAKE, SETTLE, M-

SHAKE and LINCS. All these methods work through the method of Lagrange multipliers applied 

to distance between atoms. This results in a nonlinear equation that is typically solved using 

Newton’s method. The most time consuming step of these algorithms is the determination of the 

Jacobian  via Newton’s method. Each algorithm implements this slightly differently. 

SHAKE iteratively solves this via the Gauss-Seidel method, an iterative process that 

parallelizes poorly.18 This drawback has led to development of a number of new methods. 

SETTLE solves the system analytically for groups of 3 constraints. This is very fast and works 

for explicit water models containing three bonds, but not for larger molecules.23 M-SHAKE 

solves the Jacobian directly via LU decomposition, which is faster than SHAKE but grows 

with complexity  in the number of constraints due to the need for matrix inversion.1 This 

makes it unsuitable for large molecules. LINCS estimates  with a power series, which is 

faster and more parallelizable than SHAKE, but only works for sparse bond connectivity (sparse 

matrix), and works with constraining bond lengths only.16 A newer method known as CCMA 

calculates  once at the beginning of the simulation and constructs approximations  to  that 

are fairly similar but easier to invert, leading to faster calculations. This algorithm does worse for 

molecules with greater flexibility.9

The development of newer algorithms for bond constraints has led to faster algorithms 

each with varying drawbacks. All the above methods solve for relative constraint tolerances to a 

specific point (usually ), leading to the same empirical result, but they will have different 

performance profiles depending on the system being studied and computer architecture used. 

Further research into efficient bond constraint algorithms is a promising field for the future, while 

users must consider different algorithms for maximizing simulation performance. 
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Solvent Model

Two models of solvent are used in practice - explicit and implicit solvent. For the most 

common case of water as the solvent, there are TIP3P, SPC, SPC/E, TIP4P, TIP5P as 

commonly used explicit water models. These model water as a rigid body with parameters for 

bond lengths, angles, dipole moments and other properties. For models with more than 3 sites 

like TIP4P and TIP5P, virtual dummy atoms are added to for better fitting with electrostatic 

properties. However, all of these explicit rigid-body water models suffer from not being able to 

accurately reproduce experimental bulk properties of water. 

The most commonly used implicit water model is GBSA (Generalized Born / Solvent 

Accessible), which starts with the Generalized Born approximation to the Poisson-Boltzman 

equation describing the electrostatic potential of a solute in an ionic solvent. It then adds 

nonpolar contributions with are proportional to the solvent accessible surface area in the solute. 

The main advantage of using implicit solvent is the massive speed-up of not having to treat 

interactions of solute molecules.

Some studies have shown consistent properties between proteins in explicit and implicit 

water26, while others have shown inconsistent results.24,25 It is clear that the free energy 

landscape of implicit solvent is different from explicit solvent, but it is not clear that it is 

necessarily worse. In many cases, implicit solvent has been shown to reproduce experimental 

results with good accuracy. Considering the inherent problems of explicit water models, implicit 

solvent is commonly used for molecular dynamics, even though our intuition suggests that 

explicit water more closely models reality. This is an area of molecular dynamics that is very 

poorly understood where none of the models seem satisfactory. More research will be needed 

to better understand the role of solvation in molecular dynamics.

 

Ensembles

A number of different statistical ensembles are typically used for molecular dynamics. 

The microcanonical ensemble, or NVE, maintains constant the number of particles (N), volume 

(V), and energy (E) of the system. This ensemble maintains the correct properties of the 

canonical ensemble lending to easy calculation of statistical averages. Although this ensemble 

in principle should maintain a stable temperature, having low numbers of atoms in typical MD 
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simulations, edge effects from periodic images, and computer approximation can cause drifts in 

temperature. Therefore it is the least widely used because usually there is a desire to maintain 

the system at a consistent temperature. An NVT ensemble controls the number of particles, 

volume, and temperature. This ensemble is usually used in production runs in place of NVE due 

to the ability to model the canonical ensemble while controlling temperature, but also requires a 

thermostat. An NPT ensemble controls the number of particles, volume, and temperature. This 

requires coupling to both a thermostat and a barostat. 

Typical preprocessing steps in molecular dynamics starts with the coordinates of a 

protein with a large enough simulation box to accommodate explicit solvent and avoid 

interactions with periodic images. After energy minimization, an NVT phase is used to heat up 

the system containing protein and solvent. Using NPT directly may destabilize the system as 

low temperatures lead to inaccurate pressure estimations. This slowly increases the 

temperature to the desired level. An NPT phase proceeds after temperature has equilibrated, 

resizing box vectors to the correct size. For protein studies, this phase may also place position 

restraints on the protein to let the water “soak” around the protein without altering overall protein 

structure. Finally, the production run proceeds using an NVT ensemble to remove excess 

motions induced by pressure coupling while saving some calculations.

 

Thermostats and Barostats
A number of different thermostats are available: velocity rescaling, Berendsen, Nose-

Hoover, and Langevin thermostats among others are commonly used.4 Velocity rescaling 

simply slowly rescales atom velocities to the correct kinetic energy, which is simple but doesn’t 

allow natural fluctuations. The Berendsen thermostat couples the system to an external heat 

bath with a fixed temperature. Velocities are then rescaled according to a parameter  that 

determines how tightly the system is coupled to the bath. The Berendsen thermostat is suitable 

for heating/cooling a system, but does not generate the correct canonical ensemble. Nose-

Hoover adds an extra term to the Hamiltonian of the system representing an artificial mass and 

velocity for the heat bath. This method generates temperature oscillations consistent with the 

canonical ensemble, but care must be taken to ensure that the frequency of fluctuations is 

consistent with reality. Too tight coupling may cause unrealistically quick fluctuations, while too 

weak coupling may take too long to reach desired equilibration. Another problem is the 

translation of kinetic energy from one part of the system to another, as exhibited when the 

solvent heats up concomitantly with a cooling of the solute. To prevent this, protein and solvent 
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are usually coupled to separate thermostats. The Langevin thermostat adds a frictional term 

and stochastic noise term to the computation of forces. This samples the canonical distribution 

but may cause drifts in energy over time.

Different barostats are also used in practice. The Berendsen barostat acts similarly to 

the thermostat of similar name but used to constrain pressure, with similar drawbacks of not 

generating the correct ensemble. The Nose-Hoover and Andersen barostats work similarly to 

the Nose-Hoover thermostat by addition an additional term to the Hamiltonian that can be 

thought of as representing a compressing piston. While the previous methods only allow a 

change in the overall size of the simulation box, an extension of these methods by Parrinello-

Rahman allows the box vectors to change directions as well, a property that is not particularly 

useful in typical biomolecular simulations but useful in simulating crystal properties of metals in 

materials simulations. These methods coupling to a fictitious mass have similar to the 

thermostat drawbacks, making it possible to generate unrealistic oscillations of box vectors.

In practice, there is no widely agreed-upon theory of selecting and parametrizing the 

correct thermostat and barostat that guarantees a correct and reliable simulation. General rules 

of thumb, such as Berendsen thermostat/barostat for relaxation, and Nose-Hoover thermostat/

Parinello-Rahman barostat for production simulations, have been established as a reasonable 

best practice.

 

Enhanced Sampling

The energy landscape of molecular dynamics is extremely high dimensional. 

Dimensionality scales roughly  in the number of atoms. This means that the finding the 

global energy minimum can be extremely difficult in a landscape with innumerable local maxima 

with large energy barriers. To help with this problem, a number of methods for enhanced 

sampling have been developed to better explore the energy landscape at the expense of fully 

physical  simulation.21

Replica-exchange molecular dynamics (REMD) is a common technique which runs a 

large number of replicas of a system at a range of temperatures.22 Every few time steps, usually 

around 10 fs, the conformations of the replicas are randomly switched to improve the chance of 

overcoming energy barriers that would be difficult to surmout at lower temperatures. 

Metadynamics adds a history-dependent potential that disfavors visited past states, and can be 

thought of as filling local energy minima with gaussians to prevent wasteful revisiting.28 
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Umbrella sampling samples a number or replicas against specified reaction coordinate to 

determine the corresponding energy surface. One example of such a reaction coordinate may 

be one-dimensional center-of-mass pulling on the protein to approximate protein folding/

unfolding or the binding of ligands. Alchemical methods such as weighted histogram analysis 

method (WHAM) and thermodynamic integration applied to free energy perturbation may be 

used to calculate absolute and relative binding free energies for a protein-ligand complex 

without the need for a lengthy molecular dynamics trajectory. This is done by generating a 

series of intermediate nonphysical “alchemical” states and summing or integrating across these 

states to generate an optimal estimate of free energy differences.6

 

Application

A recent study used molecular dynamics to investigate drug binding to G-protein 

coupled receptors (GPCRs).3,19 One third of all drugs target GPCRs, yet the pathway of binding 

from a completely disassociated state has remained relatively unknown. The receptor studied 

was the β2-adrenergic receptor (β2AR), which is targeted by beta blocker and beta agonist 

drugs treating a variety of conditions including hypertension, myocardial infarction, bradycardia, 

and angina pectoris. This study used unbiased all-atom MD simulations with three antagonists 

(propranolol, alprenolol, and dihydroalprenolol), and the agonist isoproterenol. Simulation 

conditions placed ligands at least 30 Å from the binding site and 12 Å from the receptor surface. 

The receptor was placed in an explicit lipid and water environment containing ~10,000 water 

atoms and ~60,000 total atoms. Simulations were performed with the CHARMM27 force field 

with all bond lengths constrained via M-SHAKE. After equilibration, production runs lasting 1-19 

μs were run in the NPT ensemble.

The surprising result was that the largest energetic barrier to ligand binding was not 

anywhere close to the actual binding site. The overall mechanism of binding proceeds through 

one dominant pathway, in which the ligand (alprenolol in this case) first associates with a 

surface region termed the “extracellular vestibule”, where it remains for hundreds of 

nanoseconds. Afterwards, alprenolol squeezes through a narrow passage into the binding 

pocket, where it immediately adopts the crystallographic pose. The unbinding process then 

follows the reverse of the binding process. The largest energetic barrier is from the binding of 

the alprenolol to the extracellular vestibule, not the squeezing of the drug into the active site. 

This provides new insight to the mechanism of drug binding, and opens up the possibility of 
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allosteric regulation of β2AR via new drug classes.

Conclusion

With recent advances in computing power and molecular dynamics algorithms, it is 

becoming feasible to simulate biological systems at time scales of interest. Many aspects of 

molecular dynamics are poorly understood and require intensive further research, but the field 

of biological simulation has matured over the last few decades with promising results. In the 

future, these simulations hold great promise towards biological understanding as they take 

center stage in the scientist’s toolbox.
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